

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE		
QUALIFICATION CODE: 07BACS	LEVEL: 6	
COURSE: NETWORK SECURITY	COURSE CODE: NWS620S	
DATE: NOVEMBER 2019	PAPER: THEORY	
DURATION: 2 HOURS	MARKS: 70	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	MRS. MERCY CHITAURO			
MODERATOR:	DR ATTLEE GAMUNDANI			

THIS EXAMINATION PAPER CONSISTS OF 2 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer all questions.
- 2. When writing take the following into account: The style should inform than impress, it should be formal, in third person, paragraphs set out according to ideas or issues and the paragraphs flowing in a logical order. Information provided should be brief and accurate.
- 3. Please, ensure that your writing is legible, neat and presentable.
- 4. When answering questions you should be led by the allocation of marks. Do not give too few or too many facts in your answers.
- 5. Number your answers clearly according to the question paper numbering.
- 6. Clearly mark rough work as such or cross it out unambiguously in ink.

PERMISSIBLE MATERIALS

1. Calculator.

1.	Public	key encryption schemes can be used for conventional encryption and o	digital		
	certificates.				
	a.	What else can public key encryption schemes be used for?	[1]		
	b.	Suppose that Romanus wants to send a message to Tjitjiri. Describe how a p	oublic		
		key encryption scheme can enable Romanus to send a digitally signed messa	ge to		
		Tjitjiri.	[4]		
	c.	What is the drawback to the digital signature method described in (1b)?	[1]		
	d.	What could be a more efficient way of obtaining a digital signature?	[2]		
	e.	Give a practical example of the solution you mentioned in (1d)	[1]		
	f.	Explain how the solution in (1d) can provide a digital signature	[3]		
2.	The po	pint of public-key encryption is that the public key is public. Thus, if there is	some		
	broadl	y accepted public-key algorithm, such as RSA, any participant can send his c	r her		
	public	key to any other participant or broadcast the key to the community at large.			
	a.	What is the problem to this approach for distributing public keys?	[2]		
	b.	What is the solution to the problem identified in (2a)?	[1]		
	c.	Explain how a user obtains a public-key certificate.	[3]		
	d.	What are the contents of a public-key certificate?	[3]		
	e.	Explain how Tuyapeni can verify Wesley's public-key certificate.	[8]		
	f.	Name a standard scheme that is universally accepted for formatting public	c-key		
		certificates.	[1]		
2					
3.	a.	How can you protect your network from passive attacks?	[2]		
	b.	How many keys are required for two people to communicate via an asymmetry			
	۵.	cipher?	[1]		
	C	Explain how public key encryption schemes can be used to distribute session			
	c.	for symmetric encryption algorithms.	[6]		
4.	The SS	SL Record Protocol provides confidentiality and message integrity security se	rvices		
	for SSI	connections.			
	a.	Which 2 services does the SSL Record Protocol provides for SSL connections	? [2]		
	b.	Which method does SSL use to get message integrity?	[1]		
	c.	Using your knowledge of SSL. Explain how SSL circumvents the attack given.			
		 Brute-force cryptanalytic attack: An exhaustive search of the key spa 	ce for		
		a conventional encryption algorithm.	[2]		
		ii. Man-in-the-middle attack: An attacker interposes during key exch	ange,		
		acting as the client to the server and as the server to the client.	[2]		
		 Password sniffing: Passwords in HTTP or other application traffi eavesdropped. 	c are [2]		
	٦	When Change Cinher spec protocol value is set to one: what happens?	[2]		

- e. One stage of SSL operation involves the use MAC. What is different at this stage compared with TLS? [2]
- 5. Cryptolocker is a malware released in September 2013, CryptoLocker spread through email attachments and encrypted the user's files so that they couldn't access them. The hackers then sent a decryption key in return for a sum of money, usually somewhere from a few hundred pounds up to a couple of grand (Norton.com, 2017).
 - a. Viruses typically have 3 components. State and explain the three components of a virus [6]
 - b. Give an example of each virus component in the context of Cryptolocker virus. [3]

Figure 1

- 6. Consider Figure 1. Assume that this network has no security implementations at the moment. Describe 3 security measures that can be added to this network. For each security measure:
 - a. State the security measure that will be added.
 b. Explain how it adds security.
 c. How is the security measure achieved?
 [3]

Good luck!!